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1.0 SUMMARY

This report presents the results of a program for the "Study
of the Costs and Benefits of Composite Materials in Advanced Turbo-
fan Engines." This program had as its objective the evaluation of
the effects of applying composite materials to advanced turbofan
engines. This evaluation included the determination of the potential
weight and production costs of individual components compared to
equivalent metal structures, an estimation of the development costs
required to realize these weight and cost projections, and an
estimate of the potential payoffs based on total life cycle costs.
These payoffs were determined by evaluating the direct operating
cost (DOC), return on investment (ROI), and fuel used for given
sized fleets.

Two time periods of engine certification were considered for
this investigation, namely 1979 and 1985. Two methods of applying
composites to these engines were employed. The first method just
considered replacing an existing metal part with a composite part
with no other change to the engine. The other method involved
major engine redesign so that more efficient composite designs
could be employed. The levels of technology employed assumed that
those concepts which already had attained some proof-of-concept
through existing or recent R&D programs would be available for
the 1979 engines,while some of the more advanced paper concepts
as well as some material improvements would be available for the
1985 engines. The engine technology employed was essentially that
used for the Advanced Transport Technology studies. From an
acoustical standpoint, the 1979 engine designs were configured to
meet FAR36 minus 10 EPNdb while the 1985 engines were designed for
the FAR36 minus 15 EPNdb.

This program developed composite component designs for a number
of applicable engine parts and functions. The cost of each detail
component was determined and its effect on the total engine cost to
the aircraft manufacturer was ascertained. This was done through a
standard type business plan engine pricing analysis. The input to
this analysis consisted of shop costs, development costs and tooling
costs. The economic benefits of engine or nacelle composite or
eutectic turbine alloy substitutions was then calculated by convert-
ing the resulting weight, cost and perfommance engine changes into
changes in the base aircraft characteristics. Trade factors for
specific changes in engine parameters were then calculated holding
payload and range constant and allowing the gross weight to vary as
required.

Composite material substitutions were made with no effect on
engine SFC (cost and weight changes only). Eutectic turbine alloy
and tungsten wire/superalloy composite substitutions, however, re-
sult in cooling flow reductions which result in SFC and engine core
size changes for constant thrust.




In determining aircraft economics, Direct Operating Costs (DOC's),
were found using 1967 ATA formula (ref. 4) modified by General Electric.
These changes are to engine material and labor costs only,
reflecting GE's experience. This method and modifications were
approved by NASA for use during the ATT engine study contract.
Deviations from ATT approved procedures were an increase in
fuel price to 25 cents/gallon, reflecting present conditions,
and a labor rate of $6.50 per hour. All other items are
unchanged from those used in the ATT Contract Study. Indirect
Operating Costs (IOC's) were found using Lockheed Georgia Report
Number LW70-500R dated May 1970. Again this was approved for
use for ATT contracts by NASA. Return on Investment (ROI) was
calculated using the DOC's and IOC's as determined above, a 48%
tax rate, and discounting the resulting stream of cash flow,

Utilization of polymeric composites wherever payoffs were
available indicated that a total improvement in DOC of 2.82 to
4,64 percent, depending on the engine considered, could be
attained. In addition, the percent fuel saving ranges from 1.91
to 3.53 percent. The advantages of using advanced materials in
the turbine are more difficult to quantify but could go as high
as an improvement in DOC of 2.33 percent and a fuel savings of
2.62 percent. Typically, based on a fleet of one hundred aircraft,
a percent savings in DOC represents a savings of four million
dollars per year and a percent of fuel savings equals 23000 m3
(7,000,000 gallons) per year.

It is apparent that very significant cost and weight savings
can be obtained by the use of composite materials in turbofan
engines. The areas where these benefits appear to be the greatest
are in the engine nacelle, fan frame, and fan blades in the cooler
portion of the engine and in turbine blades.




2.0 INTRODUCTION

With the emergence and subsequent development of advanced
composites during the last ten years, a highly promising new
family of materials is now available for consideration in aircraft
engine applications.

Initial evaluations and applications have indicated that
impressive savings in both weight and cost can be obtained in a
significant portion of typical turbofan engine components through
the use of these materials,

Most of this previous effort on advanced composites has been
directed at specific components of existing engines with the
objective of reducing the weight of the component as much as possible.
Payoff analysis has, for the most part, been limited to the effect
that these components have, individually, on engine performance with
cost being of secondary importance.

On the other hand, the application of fiberglass composites
to engine structure has emphasized the cost aspects as well as
weight savings.

In both cases, however, most of this work has been done based
on existing engines or engine designs and the composite designs
were essentially constrained to material substitution applications.
In those cases where the composite design has varied from standard
metal design, the overall part size was not changed and no resizing
of the engine attempted.

It was the overall purpose of this program to correlate all of
the component experience and conduct a comprehensive study of an
advanced turbofan engine that can be modified or resized to take
maximum advantage of the potential of composite materials. This
study not only considered the criteria of lower weight and improved
performance of both the engine and an assumed aircraft, but placed
primary emphasis on the full spectrum of costs associated with the
development, fabrication, testing, and service life of such an
engine, culminating in an overall evaluation of the materials to new
generations of civil aircraft systems.




3.0 DISCUSSION

The basic objective of this program was to evaluate the effects
of applying composite materials to advanced turbofan engines. This
evaluation included the determination of the potential weight and
production costs of individual components compared to equivalent
metal structures, an estimation of the development costs required to
realize these weight and cost projections, and an estimate of the
potential payoffs based on total life cycle costs. These payoffs
were determined by evaluating the direct operating cost (DOC), return
on investment (ROI), and fuel used for given sized fleets.

Two time periods of engine certification were considered for
this investigation, namely 1979 and 1985. Two methods of applying
composites to these engines were employed. The first method just
considered replacing an existing metal part with a composite part
with no other change to the engine. The other method involved major
engine redesign so that more efficient composite designs could be
employed. The levels of technology employed assumed that those con-
cepts which already had attained some proof-of-concept through
existing or recently completed R&D programs would be available for
the 1979 engines while some of the more advanced paper concepts as
well as some material improvements would be available for the 1985
engines. The engine technology employed was essentially that used
for the ATT studies. From an acoustical standpoint, the 1979 engine
designs were configured to meet FAR36 minus 10 EPNdb while the 1985
engines were designed for the FAR36 minus 15 EPNdb.

The approach taken to achieve the program objectives, the basis
of comparison, and the program results are presented in the following
paragraphs.

3.1 BASELINE DEFINITIONS

This section defines the aircraft and engine configurations
which were used as the basis for the cost and benefit analysis.

3.1.1 Baseline Aircraft

A typical Advanced Technology Transport aircraft designed for
0.9 Mach number was used as a basis for this study. This trijet with
supercritical aerodynamic technology is similar to other aircraft
studied and reported on under previous NASA contracts.

The fuselage has a conventional constant cross section of 5.5 m
(18 ft) in diameter; sized for seven abreast coach seating and standard
cargo bay containers, The wings have a mid-chord sweep of 0,628
radians (36 degrees), Current aluminum construction is used in the
aircraft which is sized for a payload of 18143 kilograms (40,000
pounds) or 195 passengers over a maximum range of 5556 kilometers
(3000 nautical miles) at a design cruise speed equivalent to 0.9
Mach number,

4




3.1.2 Baseline Engines

The engines selected for this study were a current technology
engine and two advanced engines which were evolutions of the ATT
engines described in Reference 1. The design characteristics of
these engines are compared in Table I. The changes made in the ATT
engines are associated with the change in cruise Mach number from
the 0.95 - 0.98 level emphasized in Reference 1 to the 0.9 level
of the current study. In addition, the fan aerodynamic characteris-
tics were made consistent with the ATT 1.8 pressure ratio fan now
in development under contract to NASA.

The installations of the various engines were designed to meet
the noise objectives for the current study. The configurations are
summarized in Table II and illustrated on Figures 1 through 4.
Installation #1 (Figure 1) is the current technology engine in its
production nacelle which meets current FAR requirements with con-
siderable margin. Installation #2 (Figure 2) is a modification of
the above to meet FAR-10. Installation #3 (Figure 3) is the 1979
certification engine with a long duct nacelle to meet FAR-10.
Installation #4 (Figure 4) is the 1985 certification engine with a
nacelle defined to meet FAR-15. Alternate inlet approaches, fixed
geometry with splitters or variable geometry are possible as shown
in Figure 4. Installation #4 requires a two position nozzle to
meet the noise requirement (not shown on drawings).

The aircraft characteristics used in the noise evaluation
are summarized in Table III. These are the same characteristics
used in an ATT follow-on study conducted by GE under contract to
NASA (Reference 2).

The results of the acoustical evaluation for the specified
flight conditions and power settings are summarized on Table IV,
The noise level relative to the FAR 36 level (shown at the bottom
of the Table) is tabulated at the three measuring points. The
traded values are shown in the right hand column. The composite
designs in this study were carried out for the 1979 and 1985
engines in a manner which held noise at the objective levels.
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Table II. Acoustic Configurations,

Installation

#1 - Current Technology - Production
Nacelle

#2 - Current Technology - Modified
Nacelle (Same Aero Lines as #l)

#3- 1979 Engine - Long Duct Mixed Flow

» #4 - 1985 Engine - Based on ATT
Follow-On Study

Feature

e Inlet Wall Treatment
e Separate ¥Flow Exhaust

e Exhaust Wall Treatment

® Respaced Rotor/OGV and
IGV

e Treated Inlet Spinner

e Exhaust Splitter

e Additional Exhaust Treatment

e Extended Inlet and Wall
Exhaust Treatment

® Treated Inlet Spinner

e Fixed Geometry

e Baseline Two Splitter Inlet
e Alternate V.G, '"Hybrid" Inlet
e Fan Exhaust Splitter

e Two Position Jet Nozzle
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3.2 MATERIALS

The composite materials which were considered for application
to the study effort, along with their projected costs in the
appropriate time period, are shown below.

Cost Per Pound

1979 Engine 1985 Engine

Graphite/Epoxy $ 30 $ 10
Graphite/Polyimide 35 12
Boron/Epoxy 90 30
Boron/Aluminum 100 : 30
Boron/Titanium 200 50

Both an advanced NiTaC eutectic alloy and a tungsten wire Super

alloy composite were considered for high temperature applications
but no specific costs were assumed. Data is given in Section 3.6
for the components utilizing these materials which cover a range

of costs,

A number of other types of composite materials exist but it
was felt that either they had too little potential compared to those
listed or their developmental stage and/or data availability did not
warrant their inclusion at this time in this type of study.
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3.3 COMPONENT DESIGNS

This section discusses the various composite component designs
that were generated to evaluate the weight and cost benefits that
could be achieved through the application of composites to high
bypass turbofan engines. The designs shown herein are representative
designs based on experience gained through various research programs
which have been conducted in the past and are not the result of
detailed optimization studies. It is felt however that these designs
are totally adequate to demonstrate the payoff potential of composite
application even though the details of an actual hardware design may
differ in some instances.

For each component, design concepts were considered for both
a part replacement version (no change to other attaching structures)
and a redesign version (other engine components changed to
accommodate a more efficient composite design). In some cases these
designs were not significantly different and in others there were
major changes. Also, in some cases such as fan blades, it was not
considered practical to use a straight replacement concept.

In order to provide a basis of comparison for the composite
components, the baseline engines, as defined in Section 3.1.2,were
used. All engines and components were scaled to the same thrust
size to provide a realistic comparison.

3.3.1 Engine Static Structure

Design concepts for all of the engine major static structure
components are shown in Figures 5 through 9. These figures contain
views of the entire component plus detailed views of any regions
thought to be necessary in establishing the fabrication complexity,
the strength integrity, the part cost, the component weight, and
the structures' reliability and maintainability.

The 1979 bypass stator case, 1979 fan frame, and the 1985
vane/frame are designed using the same structural design concept.
This concept consists of a method of constructing a component by
using integral wheel-like structures joined together by relatively
light shear panels which form the flowpaths. The structure is
then locally reinforced in the rim and hub areas as needed. This
concept results in a structure which is capable of carrying high
loads but which is easy to fabricate and requires a minimum amount
of tooling.,.

Since the frames and stator cases are inherently complex and
highly loaded structures, a multiplicity of high-strength joint
concepts are required to satisfy load transfer requirements. This
design concept not only satisfies the requirement of high structural
integrity but also yields significant payoff in both cost and weight
when compared to conventional, metallic mechanical constructions.

16
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In essence, the overall structural concept to be used for
the proposed frames consists of three basic elements (i.e.,
structural "wheels,'" shear panels, and flanges), with each
element designed to perform a specific load-carrying function.
A perspective of a typical composite fan frame is illustrated
in Figure 10,

The most vital parts of the frame are the structural
"wheels." The structural "wheels" contain five basic parts as
shown in Figure 11. The first part is a loop of continuous
fibers which form a portion of the strut and ring structures.
The second and third parts are graphite/resin laminated bushings
located in the outer and inner rings, and serve as the primary
load members in transferring radial tensile loads out of the
strut and into the rings. The fourth and fifth parts are
graphite/resin laminated "T'" members located in the outer and
inner rings, and serve as the primary load members in trans-
ferring radial compressive loads and ring loads from one strut
to another. The shear panels and flanges are composite laminate
parts. :

Figure 5 depicts the 1979 composite replacement fan frame
for the 1979 engine. Figure 5 also depicts a vertical cross-
sactional view of one of the '"wheel'" components. As seen in the
figure, the inner ring of the bypass strut "wheel" and the outer
ring of the core strut ''wheel'" are connected together. This
connection is formed by modifying the shape of the laminate "T"
members to accompany both the inner and outer continuous fiber
loops. These modified "T" members would also contain large
"lightening" holes to reduce ''wheel'" weight and to provide access
to the inner faces of the splitter flanges.

The shear panels are bonded to the four sides of each "wheel'
cavity and serve as the basic load-carrying members between
"wheels." The panels perform the following functions. First,
they transfer shear forces between wheels imposed on the frame by
a forward overturning bending moment. Second, they transfer
radial tensile and compressive forces between casings imposed on
the struts by a tangential bending moment. Third, they transfer
axial tensile and compressive forces between "wheels." Fourth,
they serve as the airflow surfaces within the frame cavities.
Fifth, they serve as a part of the acoustic sound-suppression
structure. All flowpath shear panels are sandwich structures
with the bypass panels containing an acoustical core and the core
panels containing conventional honeycomb material. Laminate
"U" flanges bonded to both skins of the sandwich panel structures
provide for the attachment of the panels of each sandwich structure
to the inner, middle, and outer ring of each '"wheel" component.

Figure 6 illustrates the 1979 composite fan frame for the
1979 composite redesign version. As seen in the figure, the
major design difference between it and the replacement version is
the elimination of one of the "wheels." This elimination is
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possible due to the redesign of the various interface geometries.
In the 1979 composite replacement fan frame, the flanges occur

at the extreme ends of the frame. This geometry causes the spokes
of the fore and aft "wheels" to be relatively small, therefore, a
middle "wheel" is required to carry a portion of the loads. Re-
locating the fore and aft "wheels'" towards the center of each
strut allows for the enlargement of the spokes, the elimination of
the middle "wheel," and therefore, a large reduction in the frame
weight.

The 1985 composite frame structure is shown in Figure 7. This
structure is a combination of a fan frame and a bypass stator vane
assembly, therefore, the structure is termed a vane/frame. The
1985 vane/frame is similar in construction to the 1979 composite
fan frame (redesign version). The basic difference is that the
number of struts in the bypass region is increased to reflect the
number of stator vanes required for the engine. This configuration
is shown in view A-A of Figure 7.

There are two basic differences between the replacement and
redesign versions of the 1985 vane/frame. The first change is the
elimination of the forward frame flange in the region of the strut
leading edge. The second change is the design method used in
providing stiffness to the struts and vanes. In the replacement
version the spokes are required to provide the general stiffness
of the frame. Geometrical restrictions caused by accessory hardware
and tubing prevent the strut and vane skins from providing excessive
stiffness. In the composite redesign version of the vane/frame the
relocation and redesign of hardware permits the skins to provide a
larger portion of the frame stiffness. Both of the above mentioned
changes permit the composite redesign version of the 1985 vane/
frame to be considerably lighter than the replacement version.

The design of the 1979 bypass stator case is shown in Figure 8.
The design concept utilized for this structure is the "wheel'/shear
panel concept; this is the same design philosophy used in the frame
design. The outer rings of the two '"wheels" are bonded to the
composite flanges which provide the interface for the frame and
nacelle.

The booster stator case, shown in Figure 9, is similar in
shape and function to the bypass stator case, but since the loading
condition of the booster stator case is lower than the bypass
stator case, the design concept is different. The booster stator
case consists of solid airfoils, transition joints, and rings.
Transition joints formed from chopped fiber, molding compound are
simultaneously molded around both ends of a pre-molded laminate
airfoil. These vane elements are then clustered together and
bonded to the faces of four premolded laminate ring structures.
The resulting structure is a complete single stage, stator case
assembly. The various stages are connected with laminate "U"
shaped channels which are bonded to the exterior, inner and outer
ring structures. The "U" shaped channels also form the inner and
outer flowpath panels,
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The weight breakdown for the various composite static
structure components investigated in the program and listed and
described above are listed in Table V.

3.3.2 Nacelle Structure

Due to the stringent noise requirements of both the 1979
and 1985 engines studied during this program, extensive acoustic
treatment is required on the outer bypass duct. Therefore for
the purposes of this discussion, this structure will be considered
in the same light as the nacelle and will be constructed in the
same manner. The containment weight is shown as part of the
total nacelle weight but will be discussed under fan blades.

On aircraft in service today, the nacelle part of the pro-
pulsion system installation is a completely separate structure
that accounts for 25-35 percent of the overall system weight.

To date, advancement in nacelle technology has not kept pace with
advanced technology engine weight reductions. Acoustic panels
which are now part of the nacelle system have been added,
independent of the nacelle structure.

The 1979 certification propulsion system takes an initial
step forward in nacelle design by integrating the acoustic panels
into the nacelle structure load path. The basic construction is
similar to the typical sheet metal-bulkhead-stringer design, except
they will utilize composite materials. The inner and outer flow-
path shells would be fabricated from composite laminates. 1In
regions where the nacelle shell depth is small, the core material
will be conventional honeycomb., Inh regions where the nacelle shell
depth is large, the two shells would be attached together through
the use of composite laminate '"wheels" which would form bulkheads
within the nacelle, 1In regions where acoustic treatment is nec-
essary the acoustic structure would be provided by structural
acoustic panels mechanically fastened to the inner flowpath shell
of the nacelle,

In the 1985 certification propulsion system,further inte-
gration of the engine and nacelle structure is anticipated. With
the more stringent noise requirements, higher inlet Mach numbers
have evolved, reducing inlet area and with approximately the same
inlet throat to highlight diameter ratio and increased highlight
to nacelle maximum diameter ratio. The engine-to-nacelle flowpath
thickness can then be reduced from approximately ten inches on
the DC10-30/CF6-50 installation to as low as three inches. With
this large reduction in cross section the fan cowl and casing can
now be integrated into one assembly thus eliminating one component
from the nacelle parts list. The bolt-in acoustic panels of the
1979 design are now an integral part bonded into the nacelle
structure. The inlet core (internal to external flowpath) will be
of honeycomb construction, the inner cells/resonators sized by
acoustic requirements. A close-out sheet will separate this
noise suppression/nacelle structure from the honeycomb to the outer
face sheet or nacelle external flowpath. This type of construction
is used throughout the nacelle.
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All duct structures shown in the 1979 and 1985 engine cross
sections are sandwich structures with composite, "U" shaped
flanges bonded to the ends of both shells. The duct flanges are
fastened to adjoining structures through the use of barrel nuts
located in radial pockets molded in the composite flange. The
core structure bonded to the inner and outer composite laminate
shells is either a conventional honeycomb core or a molded
acoustic core, depending on the acoustic noise requirements which
dictate the core material to be utilized.

Maximum reduction in nacelle cross sectional area is obtained
by mounting engine/aircraft accessories on top of the engine.
Engine cross sections shown in Figures 12, 13, and 14, however,
show the more conventional arrangement and bulge in the nacelle
flow lines with the accessories mounted at the bottom of the engine
on the fan case. Required piping and wires get to the gearbox in
the slot formed by the fan frame rings and internal flowpath and
from the gearbox to engine through the bottom pylon. With the top
mounted accessories the bottom pylon is eliminated and all service
lines go through the top pylon. The top pylon is required in
either gearbox arrangements for propulsion system mounting
structure.

A translating cowl, cascade type fan flow reverser is shown
on both the engines. Blocker actuator arms extend across the
flowpath which requires "bi-furcated" duct doors similar to the
DC10-30/CF6-50 installation. Door assemblies will be mounted to
the pylon and opened for easy access to the engine and aircraft/
engine systems.

The weight breakdown of the above mentioned composite
structures is listed in Table VI,

The spinner of the engine is designed to provide an aero-
dynamic fairing over the sump and into the engine. The spinner
must be lightweight yet able to withstand gas pressure loading
and centrifugal loading without significant deflection even under
maximum inlet distortion. The attachment system must be rigid
enough to absorb the energy of a foreign object impact, and still
be easily removed for maintenance purposes.

The edge attachment of the spinner would be a bolted design
similar to the configuration depicted in Figure 15. 1In the 1979
design, the center portion of the spinner would incorporate an
acoustical core, and the outer facing would be bonded to the
structural filaments of the flange wrapped around the bolt holes.
Although the composite replacement spinner would contain a com-
posite flange, the weight of this spinner is heavier due to joint
geometry.
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3.3.3 Fan Rotor Design

The fan design selected for evaluation and analysis in this
program is an advanced 472 m/sec (1550 ft/sec) aerodynamic
design. This design was selected as being the best compromise
in terms of having baseline information already available for com-
parison and still keeping in close agreement with the 1979 and 1985
fan requirements. It was beyond the scope of this program to de-
velop new fan blade geometry for the 1979 and 1985 engines.

The fan blade design study consisted of evaluating, primarily
from a weight and cost standpoint, several fan blade mechanical
designs, both metal and composite. The blade aero geometry in terms
of camber, stagger, solidity and tm/c distributions are similar forall
designs to keep to a minimum the differences in aerodynamic performance
resulting from the different blade designs. The major difference
existed in number of blades and corresponding increases or decreases
in blade chord to provide the proper blade torsional stability
parameter. The composite blade designs studied, for the most part,
were of differing numbers of blades from the baseline 46 blade
design and therefore could not be evaluated on a direct substitution
basis, which would require flowpath modification to provide the
proper axial spacing. This means that consideration would have to
be given to increasing the casing length in composite blade designs
of less number of blades than the baseline 46 blade design. Com- ‘
posite blades of the unshrouded type are in general not amenable to |
direct substitution due to the shear modulus of composite materials
which result in unacceptable frequency characteristics., Direct
substitution of composite blades in shrouded applications require
the development of manufacturing technology in the area of individual
blade shrouds and in significant improvements in FOD capability.

This technology was not assumed to be available for the 1985 engine
although the possible payoff in terms of weight are presented. The
difference in the 1979 and the 1985 blades selected for this study
results from using AU graphite in 1979 and advanced materials

such as some improved form of GY70 graphite in 1985 assuming that
the hybrid technique would be sufficiently developed to permit
designing with the higher modulus material while still developing
high strengths and retaining good FOD characteristics. To simulate
this hybrid material, a composite with the strength of boron and a
density of graphite was assumed.

The fan blade materials considered in whole or in combination
for this study were:

e Titanium

e Graphite/epoxy
e Boron/epoxy

e PRD/epoxy

e Glass/epoxy

The epoxy resin system was assumed throughout as meeting the
maximum blade temperature of 136° C (276°F).

Due to the low density of the composite blade materials,
root centrifugal stress was not a limiting consideration. The
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primary design setting criteria for the composite blades
was reduced velocity (VR = V/bw b = CHORD/2, V = relative

4
velocity,w = torsional frequency) and first flex frequency.

The reduced velocity and 1F/2/Rev criteria used was as
follows: ‘
1F/

VR °2/REV

Tip Shrouded Blades 1,6 - Max, 1,15 Min,
Cantilevered Blades = 1.4 - Max. 0,75 Max,

In some cases the designs evaluated are outside these
limits but not by significant amounts. In these cases the
blade would have to be tuned to provide the proper flex or
torsional frequency.

The physical and mechanical properties for the compos-
ite materials used in the study are listed in Table VII,
For blade designs having more than two composite materials
with differing fiber layup, a computer program was used to
arrive at the effective properties of the blade.

The bird impact considerations were limited to the se-
lection of material combinations and fiber layup arrangements
which were thought to provide adequate resistance to two-pound
bird impact conditions,

The noise and performance considerations are as follows:

e Tip shrouded blades generally show a 0,5 point
loss in fan efficiency as compared to un-
shrouded blades,

® Reduction in number of blades for a given fan
aero design results in a loss in fan efficiency.
Going from a 46 blade design down to a 22 blade
design results in approximately 0,3 point loss
in efficiency.

e Mid span shrouded blades can have considerable
loss in fan efficiency depending on the shroud
thickness and spanwise location,

e Reducing number of rotor blades (increasing blade
chords) with increasing axial blade spacing can
result in increased fan noise for unsuppressed
fan engine, Number of rotor-stator chord spacing
in a fully treated engine such as the 1979 and
1985 configurations however tends to be independent
of overall noise levels,
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Since the baseline metal blades are tip shrouded, and
the composite blades selected for both the 1979 and 1985
engines are cantilevered, a 0,5 point gain in efficinecy re-
sults. However since the composite rotors selected have far
fewer blades, resulting in a typical 0.3 point loss in effi-
ciency, there is about an even trade in fan efficiency.

A summary of the 14 blade configurations evaluated in
this program is provided in Table VIII. The first config-
uration represents the baseline titanium blade design having
46 blades with tip shrouds. All other designs are compared
to this design for overall rotor weight savings,

The composite tip shrouded configurations were consid-
ered to be a technology needing more manufacturing and bird
impact development before being ready for advanced applications,
but the potential payoffs for these blades are shown for
reference,

The various unshrouded designs were assumed to apply to
both the 1979 and 1985 engines,

Several spar/shell designs were considered for comparison
with the solid composite design.

The solid graphite/epoxy blades were presented primarily
for comparison with the hybrid flex root blade designs and
were not intended as designs which could pass the .9 kilogram
(2 1b) bird impact requirements.

The cantilevered flex root blade design with the AU
graphite material is shown in Figure 16,indicating the fiber
arrangement and orientation angles.

The basic points to consider in evaluating the data in
Table IV are as follows:

e FOD capability of designs are not necessarily
equal,

e Heavier blades generally provide higher impact
resistance,

e Tip shrouding has potential for load sharing
during impact,.

® Pinned root configurations permit more deflection
and centrifugal recovery thereby increasing im-
pact capability.
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e Titanium has greater impact capability because
of its higher toughness and ability to plastically
deform but often leads to greater secondary damage.

® Metal blades require more containment for the same
blade weight.

e Hybrid flex root blades offer greater impact
resistance for composites.

e The spar/shell blades considered may offer greater gross
impact capability compared to an all composite design but
are likely to yield lower initial threshold damage
due to interface characteristics.

e Spar/shell designs will most likely be more ex-
pensive to manufacture than composite blades.

An overall evaluation of this data indicates that both
the 1979 and 1985 engines would contain composite flex root
cantilevered blades.

For the 1985 engine, tip shrouded hybrid composite blades
offer greater weight saving potential providing manufacturing
and impact technology is available.

As mentioned above, composite blades require less con-
tainment for the same blade weight than metal blades due to the
way the composite material fails. The weight of the required
containment is included in the nacelle weight but is mentioned
here because the reduction in containment weight is directly
related to having composite blades. Since the 1979 replacement
concept does not have composite blades, a metal containment
weight of 136 kilograms (300 1lb) was chosen as typical. In the
1979 redesign which does have composite blades, it was assumed
that 113 kilograms (250 1b) of metal containment would be re-
quired. For the 1985 replacement concept, which again had metal
blades, a metal containment of 125 kilograms (275 1b) was used
which assumed some improvement in containment technology. For
the 1985 redesign engine with composite blades, a fiber/felt
arrangement was used which produced a containment weight of
68 kilograms (150 1b).

3.3.4 Booster Blade Design

Stages 2 and 3 booster blades were considered for composites
on a direct substitution basis. The dovetail configuration for
composite blades will be consistent with current large composite
fan blade designs having a bell-shaped pressure face and possibly
having a swing root outsert. The thinness of the small booster
forces the blades to be solid instead of hollow,
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3.3.5 B/Al First Stage Compressor Design

The application of boron/aluminum composite material in the
first stage compressor blade was studied. The results of this
study indicated that use of B/Al was technically feasible; however,
the only apparent advantage was a relatively small weight reduction.
Further development of this component was not recommended as the
study indicated the B/Al blade would cost considerably more than
the titanium blade even in the 1985 time period.

The first stage compressor stage contains 38 cantilevered
titanium blades. The tip speed is 1550 ft/sec with a maximum
operating temperature of 530°F. The blade airfoil is 3.36 inches
long with a root chord of 2.19 inches. The titanium blade weights

.183 pounds.

The equivalent B/Al blade is technically feasible in con-
sideration of application temperatures and stresses. There is no
aerodynamic advantage in using B/Al; however, the chord can be
reduced approximately 12%. This would reduce the compressor and
overall engine length by .162 inch. The number of blades would
increase to 42 to maintain the aerodynamically required solidity.
The B/Al blade weight would be .104 pounds. Considering the
difference in the number of blades, reduction in the disc weight,
and further reductions by reducing the compressor length, the
total weight reduction would be approximately 4.51 pounds.

A comprehensive cost analysis was conducted. The cost of
both the titanium and B/Al blades was projected to the 1985 time
period. Based on a 600 titanium blade lot and 660 B/Al blades,
accounting for the greater number of B/Al blades required per stage;
the B/Al blades would cost 11% more than the titanium blades. Based
on 2000 titanium and 2200 B/Al blade lots, the B/Al blades would
cost 64% more than the titanium blades. These estimates do not
include development or tooling costs which would be considerably
higher for the B/Al than the titanium blades.
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3.3.6 High Pressure Turbine Design

Possible benefit of using advanced composite materials in the
HPT area were explored by considering its use on a 1985 engine
design. A base turbine design was carried out using a currently
available high temperature nickel superalloy designated Rene' 120.
A R120 bladed turbine was designed and its weight and required
cooling determined. Two composite blade materials were then sub-
stituted into the design. The first material was a eutectic alloy
called advanced NiTac while the second was the tungsten wire /super-
alloy composite. The benefits and penalties of using the two
advanced materials were determined by comparing the resulting design
with the base design. Figure 17 summarizes the blade material
definition.

Allowable blade bulk metal temperatures were determined by
applying commercial life requirements for the blade while satis-
fying a typical CF6-6 engine commercial mission. For the HPT
blade of R120, an allowable bulk metal temperature of 921°C (1690°F)
was set. Figure 18 describes the process of setting the allowable
bulk metal temperature. Advanced NiTac and the tungsten wire/super-
alloy composite blade allowable temperature was set at a range of
1004°C (1840°F) to 1088°C (1990°F) to explore the possible range of
material capability. The key assumption is that all critical blade
properties will be equivalent to the base design at the elevated
temperatures.

The turbine blade and disc system was modeled after an existing
design but scaled to the proper thrust size. The design used an
unshrouded, long chord airfoil retained by a multiple tang dovetail.
HPT blade weight was scaled to permit an accurate determination of
the blade dead loads. The base case and all composite blade designs
used a Rene' 95 material disc. Figure 19 summarizes the procedure
followed. Additional designs were made with the advanced NiTac and
tungsten wire superalloy blades for the same cycle conditions.
Figure 20 presents the cycle gas temperatures and the conversion to
design relative gas temperatures. Tables IX and X show the weight
difference between each design.

Three different cooling technologies (and effectiveness) were
assumed for the HPT blades in this study. Blade cooling system
schematics are shown in Figure 21 for each of the technologies. The
first, called advanced film cooling, employs an insert with impinge-
ment cooling on the inner surface and film cooling on the outer blade
surface involving large numbers of small holes. It is representative
of the cooling technology that should be available for a 1985 engine
where high cooling is required.

The second cooling technology, designated advanced convection
cooling, assumed an impingement insert but only trailing edge dis-
charge. It would be employed where only moderate cooling is
required or where holes in the blade are unacceptable.
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A third cooling technology, designated current film cooling,
is representative of advanced cooling now being employed on HPT
blades in General Electric engines. An insert supplies internal
impingement cooling while a limited number of so called '"gill holes"
provides film cooling over the most critical blade heat transfer
area. Cooling effectiveness of this approach lies between the
advanced film cooling method and the advanced convection cooling

method.

A heat transfer analysis was performed to determine the
amount of cooling air needed to keep the advanced material at the
specified bulk metal temperature. For the HPT blade, Figure 22
shows the cooling air required as a factor of metal temperature and
cooling technology. The cooling effectiveness applicable to each
of the cooling technologies was used in this analysis. Engine
thrust and cycle temperatures and pressure were maintained. Changes
in cooling air requirements were then reflected by changes in core
size and SFC. Tables IX and X present the SFC differences
resulting from the HPT blade material substitution referenced to
the base R120 HPT blade design.

Cost differences shown in Tables IX and X reflect only the
costs due to resizing the core engine. Blade material cost
differences are not included but the effects of a range of cost are
covered in Section 3.6. Weight changes shown are due to core size
change and to design changes due to the substitution of the advanced
turbine blade composite material.

3.3.7 Low Pressure Turbine Design

A highly loaded four stage LPT for an advanced 1985 engine was
used to evaluate the effects on design weight and cooling of the
advanced composite blading materials. As in the HPT blade design,
allowable bulk metal temperatures were set by evaluating expected
life and stress conditions. 1In the case of the LPT, however, only
convection plus limited impingement type cooling was used for all
cooled blades. More advanced film cooling is not needed for the
amount of cooling required. Also, there is difficulty in using
elaborate inserts in the longer, highly twisted LPT blading. Figure
23 shows the cooling flow required for the LPT.

As was done for the HPT, weight and SFC effects were calculated
for each of the materials. Table XI presents the results along with
the assumed allowable metal temperatures. Again, cost effects are
for the changes in core size only due to changes in required cooling
flow. Cost effects due to blade material changes were not con-
sidered here but are dealt with in Section 3.6.
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The most significant effect of switching from R120 in the
first two cooled LPT stages to Advanced NiTac and the tungsten wire-
superalloy composite material was the decrease in the required
cooling flow. When the upper range of allowable metal temperature
is used, one cooled stage is eliminated.

3.3.8 Weight Summary

This section presents a summary of the weight savings
available to the components previously discussed through the use
of composite materials.

In order to provide a consistent basis of comparison with
existing components, the weights of the various composite components
described above were combined in a slightly different grouping than
shown in the component drawings. This was necessary to account for
the more unitized composite configurations as compared to the more
modular metal construction. This reassignment of weights and
component definitions is shown in Table XII,

To make maximum use of available data some of these components
were of slightly different sizes for different thrust size engines.
To make the data more meaningful, it was scaled to a constant
thrust size engine and these data are presented in Table XIII.
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Table XII. Weight Comparison, kilograms (pounds).
1979
Component Baseline Replacement Redesign
Nacelle? 1560 (3440) 1225 (2700) |1202 (2650)
Spinner 32 (70) 29 (63) 23 (50)
Stator Case Ass'y® 315 (695) 180 (396) 166 (367)
Fan Frame 297 (655) 177 (3920) 160 (353)
Fan Rotor Ass'y® 180 (397) N/A 137 (302)
Booster Blades 9 (20) 6  (13) 6 (13)
1985
Nacelle® 1293 (2850) 1043 (2300) 975 (2150)
Stator Case Ass'y* 107 (235) 57 (125) 57 (125)
Vane Frame 336 (740) 254 (560) 233 (513)
Fan Rotor Ass'y® 180 (397) N/A 127 (280)
Booster Blades 9 (20) 6 (13) 6 (13)

1Structure Consists
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Nacelle Shell
®Structure Consists
Acoustic Splitter,
3Structure Consists
Case

*Structure Consists
8 Structure Consists

of Inner and Outer Duct, Containment, and

of Inner and Outer Duct, Containment,
and Nacelle Shell
of Bypass Stator Case and Booster Stator

of Only Booester Stator Case
of Blades and Disc




Table XIII., Scaled

Weight Comparison, kilograms (pounds).

1979
Component Baseline Replacement Redesign
Nacelle 1195 (2,634) 938 (2,067) | 920 (2,029)
Spinner 23 (50) 20 (45) 16 (35)
Stator Case Ass'y 229 (504) 130 (287) | 121 (266)
Fan Frame 213 (469) 127 (279) | 114 (252)
Fan Rotor Ass'y 184 (406) N/A 140 (309)
Booster Blades 14 (30) 9 (20)
1985
Nacelle 990 (2,182) 799 (1,761) | 747 (1,646)
Stator Case Ass'y 77 (170) 41 (90) 41 (90)
Vane Frame 240 (530) | 182  (401) 166 (367)
Fan Rotor Ass'y 184 (406) N/A 130 (286)
Booster Blades 8 (17) 5 (11) 5 (11)
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3.4 COMPOSITE COMPONENT FABRICATION

In order to obtain a reasonable estimate of the costs of the
various components involved, it was necessary to consider in some
detail the methods by which these components could be fabricated.
Descriptions of the fabrication concepts utilized for the cost
determinations are shown below for several of the components which
appeared to have the most significant payoff.

3.4.1 Fan Blades

The composite blade configuration is a highly sophisticated
design consisting of a complex airfoil shape (see Figure 24), In
this respect it is much like a standard type propeller except
that it has a much greater twist in the airfoil from its tip to
the dovetail-like shape at its root. Complex airfoils of this
type are developed by stacking well-defined lofted patterns layer
on layer, Each layer represents a lofted elevation of an extermal
profile much like a contour map defines the relationships of
changing elevations of a contoured surface, In the composite blades
for the 1979 and 1985 engines, there could be 400 different shaped
layers or laminae plies of material needed to completely define
the fan blade configuration and fewer layers for the booster blades
since they are smaller blades., This general description of the
composite blades seems complex, but the basic concept in defining
compound shapes by layers of varying shapes is a common approach
that has been employed for several decades. However, modern day
technology can simplify the method of accomplishing this rapidly,
precisely, and repetitively. The concept best suited to the
manufacture of the blades by the lamination process is by molding
the stacked laminae (preforms) in a heated match metal mold under
pressure delivered by a hydraulic press equipped with programable
instrumentation to control time, temperature, and pressure parameters,

Figure 25 shows the process pictorially and in the sequence
that has been used to manufacture several hundred large polymer com-
posite blades, Figure 26 illustrates how these blades can be made
in production quantities of more than 10,000 blades. This can be
accomplished by the use of special material handling and multi-
clicker die equipment to precut lofted patterns as shown in Fig-
ures 27, 28 and 29, These patterns are conveyed to a sorting area
where subassemblies of the patterns are made, then conveyed to a
station where these subassemblies are stacked in succession to
make a preform (Figure 30)., On completion, the blade preforms are
placed into a heated match metal die (Figure 31) and molded under
pressure by use of a hydraulic press equipped with programming
devices to control time, temperature, and pressure parameters,
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Figure 31. Composite Blade Mold Tool Design.




This process completes the first phase of the cure in molding

the blade. When cure of the blade is complete, it is removed
from the press, post cured, and conveyed to a station where the
dovetail is machined (Figure 32) to engineering requirements,
Then the blade is scheduled to an area where a protective coating
is applied. This is the final step in the process and the blade
is now ready to be inspected,

This entire process utilizes standard assembly line techniques
and equipment which have been modified to meet the unique composite
construction of the polymer composite blade.

3.4.2 Nacelle - 1979

The nacelle design is composed of several major segments to
make one large-diameter, long duct. Each major segment consists
of an assembly of polymeric composite parts which have been
adhesively bonded and/or bolted together, The sound suppression
features are part of the nacelle structure and the construction
is made with fiber reinforced polymeric skins that are adhesively
bonded to a suitable core. This is a general description of the
nacelle designs for 1979 and 1985, However, each differs in
construction and will require a different approach to their manu-

facture,

Specifically, the 1979 engine nacelle design (Figure 33) has
a construction consisting of honeycomb sandwich panels attached to
polymeric composite rib structures that are located radially and
axially for internal airflow surfaces. The sound suppression
panels with porous airflow skins are mechanically attached to the
rib structures at the internal surface of the nacelle, External
surfaces consist of solid laminate panels of fiber reinforced
polymeric composite materials that are adhesively bonded and/or
mechanically affixed to the radial and axial rib structure,

The fabrication sequence that would be used in manufacture of
any major segment of the nacelle is shown in Figure 34, The type
of tooling that would be used in manufacture of these components
and assemblies is described below,

Nacelle Internal Panel Fabrication

Male dies would be used for molding all acoustically treated
sandwich panels that fit to the internal airflow surface of the
nacelle., These male dies would have the capability to mold a fiber
reinforced polymeric laminated airflow face sheet with controlled
porosity. The face sheet and back sheet would be molded with the
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honeycomb in place by a unique co-cure process, This process con-
sists of curing the entire sandwich construction at one time with
vacuum bag/autoclave technology at specified times, temperatures,
and pressures, The attached sketch (see Figure 35) is a simplified
illustration of the male die process concept where the vacuum bag/
autoclave technique is used,

Nacelle External Panel Fabrication Concept

Female type dies and vacuum bag/autoclave technology would
be used to manufacture the fiber reinforced polymeric skins for
the panels of the external surface of the nacelle, These panels
will also be processed at specified time, temperature, and pres-
sure parameters,

Ribs and Brackets Fabrication

Graphite fiber reinforced polymeric composite radial and axial
rib structures and brackets for joining external panels and internal
panels to the rib structures would be manufactured on match metal
dies, These components would be processed in a press at tempera-
ture and pressure for a specified time,

Assembly of Nacelle Segment

Trim and drill fixtures would be used in machining the auto-
claved components to design requirements, These components, the
parts that have been molded to size, and the necessary metal com-
ponents would be assembled with the aid of an assembly fixture that
holds each component in position during the bonding and installation
of mechanical fasteners.

3.4.3 Nacelle - 1985

The 1985 engine nacelle design is composed of several major
segments that are assembled to make one large duct. Each segment
is defined as a unitized sandwich construction, It consists of
a two-phase, full-depth, honeycomb core material with co-cured
fiber reinforced polymeric composite facings. Sound suppression
treatment is integral with the full-depth sandwich construction
for the total internal airflow surface of the nacelle., Additionally,
the inlet splitter and supporting struts are a sandwich construction
with fiber reinforced polymeric composite laminate faces that have
a controlled porosity structure as part of the sound suppresssion
treatment., This construction is common to both airflow surfaces
of the splitter and support structure.
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The basic fabrication methods for the manufacture of a typical
major segment (see Figure 36) of the nacelle would consider the
use of the following types of process methods,

e Vacuum bag/autoclave process techniques with full
definition of time, temperature, and pressure param-
eters during cure of the polymeric composites. This
technique would be used when processing on male or
female type molds. Male molds would be used in the manu-
facture of outer duct airflow surface construction,
Female molds would be used for core cowl (inner duct)
airflow surfaces,

e Match metal die molding processes would be used for
ribs, panel closeout rings, and strut leading and
trailing edge details. These dies would be used in a
hydraulic press with heated plattens and sufficient
controls to program closing speeds, temperatures, and
pressures at specified time periods.

e Machining fixtures for trim, drill, routing, milling
and form operations would be used to rough machine and
finish machine components made with the vacuum bag and
match metal die manufacturing methods and for shaping
honeycomb core material for the full-depth core
construction,

e Finished molded and machined polymeric composites
would be brought together first in subassemblies,
then as a major assembly. This would be accomplished
by subassembly and major assembly jigs.

The fabrication concept to be considered in the manufacture of
the major segments of the nacelle consists of utilizing standard
vacuum bag/autoclave technology methods. The two-phase, full-depth,
unitized honeycomb structure (Figure 37) integrates the acoustic
treatment with the full-depth structural honeycomb and would be
made by those processing techniques (Figure 38), The structural
honeycomb has a different cross-sectional shape than the acoustic
honeycomb but each must mate at the acoustic cell close-out
interface. This would be accomplished by machining the honeycomb
segments to shape. The honeycomb can be machining in the unexpanded
or in the expanded condition. After machining the different shapes,
the honeycomb would be primed with a corrosion resistant coating,
then formed to a specific shape with special tooling to meet the
nacelle contour requirements,

These formed and shaped segments of the honeycomb, with their
related face sheets, would be built upon a mold in the following

sequence,
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NACELLE FABRICATION SEQUENCE

Sequence No,

1. MOLD PERFORATED FACE SHEET

Lay down fiber reinforced polymeric composite prepreg

material over released spiked mandrels. See Figure 3§,

v

2. INSTALL ACOUSTIC HONEYCOMB

Place preformed acoustic honeycomb over the prepreg. Add

shear material at honeycomb joints.

v

3. CURE

Vacuum bag and cure at temperature pressure and time in

autoclave. After cure, remove process materials,

v

4. APPLY ACOUSTIC CLOSE-OUT MATERIAL

Lay up the acoustic close-out material over the acoustic

honeycomb.

v

5. /ADD STRUCTURAL HONEYCOMB

Place the preformed structural honeycomb on the uncured
acoustic close-out material. Add shear tie material at

honeycomb joints.

v

6. CURE

Repeat step #3.
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10.

11.

Sequence No.

ADHESIVE FILM

Place uncured adhesive film over the structural honeycomb

and metal components.

v

OUTER SKIN, RIBS, BRACKETS, CLOSE-OUTS

® Mold outer skin with fiber reinforced polymeric compos-
ite material using vacuum bag/autoclave technology at
a specified temperature, pressure, and time schedule.

Prepare cured laminate for bonding.

® Mold ribs, brackets, and close-outs with advanced com-

posite materials using match metal die/press technology
and cure at a specified temperature, pressure, and time

schedule. Then prepare bonding surface for bonding.

T

APPLY OUTER SKIN, RIBS, BRACKETS, & CLOSE-OUTS

Position precured and rough trimmed outer skin over the

“honeycomb and advanced composite ribs and close-outs that

have adhesive film applied to their bonding surfaces.

v

CURE

Repeat step #3, then remove cured subassembly from mold.

v

INSPECT

Inspect construction for adhesive bond integrity.

v
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Sequence No.

12,

13.

14.

15.

16.

76

MACHINE

Trim/drill subassembly and prepare for installing into

major assembly jig.

v

MAJOR ASSEMBLY

Install subassemblies —— two nacelle halves of one major

segment., See Figure 39,

Fit up the two subassemblies. Trim/drill as required for
mate to adjoining components. Adhesive bond two halves with

doubler joint., Adhesive bond mating metal components.

v

CURE

Process major assembly to step #3 schedule.

v

CLEAN UP AND COAT

Clean up major assembly and coat with required protective

coating material.

v

INSPECT

Ship to final inspection and inspect.
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Adhesive Film

Structural Honeycomb

Vacuum Bag
(Process Method)

Bleeder

Process

Material
Acoustic Close Out

Spiked Mandrel

Vacuun Pressure

Outer Skin

Porous Skin of Sound
Suppression Panel

Autoclave

Figure 38. Male Mold Process Concept Acoustic Panel, 19835.
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A-i—
Section A-A

Figure 39. Major Segment of 1985 Nacelle Assembly of Halves.

80




The above sequence of fabrication is a generalized version of
the method of manufacturing a typical segment of the nacelle, Ex-
cept for configuration changes in design and minor variations in
sequence of manufacture, this concept would be used throughout the
manufacture of the other segments of the nacelle., Wherever pos-
sible, the co-cure concept would be used to gain the added payoff
of low cost processing methods,

3.4.4 Fan Frame

The main features of the frame include several spoked struc-
tural graphite/polymer wheels spaced axially with graphite/polymer
airfoil skins and flowpath components adhesively bonded within the
spoke and ring regions (Figure 40), These spoked wheels with outer
and inner rings are attached to the outer casing sandwich struc-
ture immediately over and directly aft of the fan blades. This
entire frame structure is a bonded assembly consisting of laminates
and sandwich construction.

Fabrication details considered in the manufacture of the frame
are as follows:

e Fabrication outline plan

® Materials preparation

® DPress molding techniques using matched metal molds and
hydraulic press

e Vacuum bag/autoclave techniques using male and female
tooling

e Machining methods - trim/drill fixtures for trimming
and drilling molded parts and assemblies of molded
components

e Bond assembly technology - subassembly and major as-
sembly jigs for maintaining configuration tolerances
during the adhesive bonding process.

e Inspection
The above process methods and general sequence in the manu-
facture of the polymeric composite frame construction is illustrated

in Figure 41, This sequence of events would apply to the 1979
or 1985 version of the frame,.
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" SECTI0N D-D

VIEW AFT LOOKING FYD

o]
ITEN COMPONENT NAME fﬁ%&%g
1 Filmold Flange MD, AB -
2 Qutcr Skin ' VA, M, AB
3 Imner Skin VA, M, AB
4 Double Filmold Flange MD, AB
5 Inner Skin VA, AB
G Honeycomb M, AB
7 Outer Skin VA, M, AB
8 Filmold Flange Ring MD, AB
9 Skin MD, AB
10 - 14 Aft Wheel MD, AB
15 - 17 Front VWheel MD, AB
18 Concave Skin MD, M, AB
19 Convex Skin MD, M, AB
20 Scal M, AB
21 Shroud Metal M, AB
22 Honcycomb VA, M, AB
23 Skin - Conec VA, M, AB [EC ATA X
24 Skin - Conc VA, M, AB
25 Skin - Cylinder MD, M, AB AB = Adhesive Bonding
26 Skin ~ Flow Path VA, M, AB MD = Match Metal Die
27 Skin - Flow Path VA, M, AB VA = Vacuum Bag/Autoclave
28 Concave Skin VA, M, AB M = Machining (Trim, Drill)
29 Convex Skin VA, M, AB

Figure 40. Vane Frame, Composite (1985).
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3.5 COMPONENT COST ESTIMATES

This section discusses the methods used to develop both the
production costs of the components described in Section 3.3 and
the development costs necessary to attain the technology necessary
to successfully design and fabricate these components. Estimated
man-hours and direct costs are given for each component and the
average cost of the 600 units is given as a percentage of the
metal baseline component cost except for the turbine blades for which
a range of costs are given. The metal component cost, insofar as
was practical, was taken from actual cost on production engines.
The detail cost data is presented for the actual size of the com-
ponent as designed and compared to an equivalent sized metal com-
ponent. In order to make the best use of existing data, these
component sizes were not necessarily the exact size as required
for the baseline engine. There were no major size discrepancies;
but in order to provide a coherent summary, components and their
costs were scaled to a common thrust size engine for the DOC and
ROI investigations. This size discrepancy was not sufficient to
affect the development parameters.

3.5.1 Cost Estimating Procedure

The outline of the component cost estimating and evaluation
procedures used in this benefit analysis study consisted of the
following five steps:

1) Cost Estimating - Development

2) Cost Estimating - Production

3) Comparative Analysis - Development
4) Comparative Analysis - Production

5) Percent Comparative Analysis Summary

Steps 1 and 2 were derived by listing all candidate engine
composite components individually and describing them in detail
together with all the parameters affecting their respective related
man-hours or direct costs. Steps 3 and 4 compiled similar costs
of relative development and production parameters of the proposed
advanced turbofan engines together with existing or projected costs
of the 100 percent baseline engine components. Step 5 is a final
summarization of all the data generated for easy comparison between
current and proposed future technology costs and payoff effects on
both engines and aircraft.

Each category of cost estimating and comparison relationships

and some of the rationale behind subsequent estimations and
calculations are presented below.
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In order to generate realistic input for data summary,
a series of cost estimating and comparative analysis were
generated to delineate all aspects of effort and relation-
ships necessary to support experienced judgement of man-hours
and direct costs for the many parameters listed for each
proposed composite engine component.

Historically, the substitution of composites for metals
has demonstrated significant payoff in both cost and weight,
but in some cases, maximum payoff has been inhibited by the
requirement of direct substitution of composite geometry for
metal geometry in order to keep the cost of such substitution
to a minimum. By initiating the proposed turbofan engine
designs with the use of composite material considerations
wherever feasible, a significant improvement in composite
structure efficiency was often manifest in the final engine
structure.

3.5.2 Production Cost Estimations

Production manufacturing cost estimations have been made with
the guidance of Value Process Engineering who are responsible for

estimating costs of composite production hardware for pro-
duction at the GE-Albuquerque Plastics Facility. In arriving
at the average cost for the 600 units, the following consid-
erations were given attention:
Materials
1) Material cost per unit
e Raw material
® Metal hardware
e Coatings
® Adhesives/primers
2) Waste and spoilage add 10% to cost
3) Unreported losses per unit add 12% to cost
4) Expense of material procurement/unit add 7.1% to
cost
Labor
1) Production setup/checkout cost/unit
2) Time to manufacture component or assemble
3) Cost for overrun factor per unit add 40% to cost
4) Inspection per unit add 15% to cost
5) Labor lost due to scrap per unit add 10% to cost
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6) Rework and repair/unit add 10% to cost
7) Indirect manufacturing expense add 173% to cost

Tooling

1) Tooling materials cost
2) Tool design cost

3) Tool purchase cost

4) Tool inspection cost

These represent production costs as exist in January, 1974,
at a typical production facility using the General Electric
Composite Product Facility at Albuquerque, New Mexico, as the
model. The line items were discussed in more detail in the
Task I report.

Estimated time to manufacture the component or assembly
considered the various steps necessary in processing the mater-
ial and/or adhesively bonding the components together into an
assembly, plus final machining.

The first article cost identified for each component of
the assembly consisted of tooling, material, labor and con-
tingencies. The average cost for 600 units was established by
adding only the estimated cost for raw material and total labor
cost for the first unit, A factor for waste/spoilage and cost
to purchase was added to the estimated cost for raw material,
The labor cost arrived at in the development phase was placed
on an 86% learning curve and projected to the average cost for
the 600 units., Then several factors were added to this cost
to compensate for the following: 1) overrun, 2) inspection,

3) scrap, 4) rework/repair, and 5) indirect manufacturing
expenses, This value was added to the total material cost to
yield an average cost for the 600 units. The cost for production
tooling was not factored into the 600 units as such tooling is
usually amortized over a much shorter span of production.

The method and detail involved in obtaining the costs
of the components investigated is illustrated in Table XIV
which is a complete parts breakdown of the 1979 composite
nacelle shown in Figure 42. This breakdown shows both the
tooling and assembly costs for the first unit. This same
type breakdown was made for all components. In some cases,
such as the nacelle just shown, subcomponents such as the
forward outer duct sound suppression system are shown
separately as well as being included in the overall nacelle.




Date:

Table X1V,

. 12/17/73

TITLE:

DRAWING NUMBER:

1979 NACELLE - COMPOSITE LAMINATE

1979 Composite Nacelle.

4013096-512

( Figure 42 )

STUDY:

ITEM COMPONENT NAME K-TOOL UNITS/ASS'Y HRS/UNIT TOTAL ERS
1 Cap - De-Ice (titanium) 5 1 40 40
2 Cap - Inner 5 1 40 40
3 Flange - Transition 5 1 16 16
4 Flange 6 6 @ 60° 48
5 Flange - Transition 6 6 @ 60° 48
6 Flange 6 6 @ 60° 8 48
7 Ring (per Section B-B Typ.) 8 1 40 40
8 Flange 6 6 @ 60° 8 48
9 Flange -~ C.P. 8 6 @ 60° 48

10 Skin - A 6 1 24 24

11 Skin 6 1 16 16

12 H-C 3 1 16 16

13 Skin 6 1 16 i6

14 Flange - C.P. 8 6 @ 60° 48

15 Flange - FM 8 6 @ 60° 48

16 Flange 8 6 @ 60° 8 48

17 Ring - (BB) 8 1 40 40

18 Flange 8 6/60 8 48

19 Skin - A 6 1 24 24

20 Insert - Nut 72 1/4 18

21 Skin 3 1 8 8

22 H-C 16 16

23 Skin - A 6 1 24 24

24 Bolt 72 .03 2

25 Skin 6 1 16 16

26 Skin 3 1 8

27 Flange 8 6/60 48

28 Flange ~ FM 8 6/60 48

29 Flange 8 6/60 48

30 Ring (B-B) 8 1 40 40

31 Flange - FM 8 6/60 8 48
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Table XIV. 1979 Composite Nacelle (Continued).

Date: 12/17/73
TITLE: 1979 NACELLE - COMPOSITE LAMINATE
DRAWING NUMBER: 4013096-512 Figure 42)
STUDY:
ITEM COMPONENT NAME X-TOOL UNITS/ASS'Y HRS/UNIT TOTAL 23

(Continued)
32 Flange 0 6/60 8 48
33 Flange 0 6/60 8 48
34 Skin 4 1 24 24
35 Skin 4 1 24 24
36 H - Comb 3 6 @ 60° 4 24
37 Skin - A 4 1 30 30
38 Flange 0 6 @ 60° 8 48
39 Flange 8 6 @ 60° 8 48
40 Ring 8 1 40 40
41 Flange 0 6 @ 60° 8 48
42 Flange 0 6 @ 60° 8 48
43 Flange 0 6/60 8 48
44 Skin - A 0 1 8 8
45 H - Comb 2 6/60 4 24
46 Mult. Flange 8 6/60 8 48
47 Skin 0 1 8 8
48 Ring Flange 8 6/60 8 48
49 Flange Ring 10 6/60 8 48
50 Flange 0 6/60 8 48
51 Void -- - - - -
52 Seal 2 6/60 6 36
53 Flange 0 6/60 8 48
54 H - Coumb 0 1 8 8
55 Flange 0 6/60 8 48
56 Flange 4 6/60 4 24
57 Flange - Ring 10 6/60 8 48
58 Flange 5 6/60 4 24
59 Skin 3 1 16 16
60 Flange 3 6/60 8 48
61 Ring 6 1 40 40




Date:

Table XIV, 1979 Composite Nacelle (Continued).

12/17/73

TITLE:

DRAWING NUMBER:

1979 NACELLE - COMPOSITE LAMINATE

4013096-512

(Figure 42)

STUDY:
ITEM COMPONENT NAME K-TOOL UNITS/ASS'Y HRS/UNIT TOTAL HRSM
(Continued)
62 Flange 4] 6/60 8 48
63 Flange - Ring 0 6/60 8 48
64 Flange [ 6/60 4 24
65 Flange 0 6/ 60 8 48
66 Skin - A 6 1 24 24
67 Flange - Ring 10 6/60 8 48
68 Flange 8 6/60 8 48
69 Skin 6 1 16 16
70 H - Comb 3 1 16 16
71 Flange 6 6/60 48
72 Flange 6 6/60 48
73 Ring 10 1 40 40
74 Flange 6 6/60 8 48
75 Flange 8 6/60 48
76 Flange 8 6/60 8 48
77 Flange 6 6/60 8 48
78 Skin 3 1 16 16
79 Skin 5 1 32 32
80 H - Comb 4 6/60 4 24
81 Skin - A 4 1 20 20
82 Flange 6 6/60 6 36
83 Flange 0 6/60 6 36
84 Flange 0 6/60 . 8 48
85 Ring 10 1 40 40
86 Flange 10 6/60 8 48
87 Skin 3 1 8 8
88 Close Out 6 6/60 6 36
89 Cap Flange 6 6/60 6 36
90 Skin - A 4 1 20 20
91 Skin 0 1 8 8
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Table XIV. 1979 Composite Nacelle (Concluded).

Date: 12/17/73
TITLE: 1979 NACELLE - COMPOSITE LAMIXN
DRAWING NUMBER: 4013096-512 (Figure 42 )
STUDY:
ITEM COMPONENT NAME K-TOOL UNITS/ASS'Y HRS/UNIT TOTAL it
(Continued)
92 Flange 5 6/60 48
93 Skin 0 1 8
94 Flange 0 6/60 6 36
95 Ring 5 1 32 32
96 Flange 0 6/60 6 36
97 Ring 5 6/60 4 24
98 Skin "U" 6 6/60 8 48
99 Flange (Filmold) 15 6/60 8 48
io0o Void -~ - - - -
101 Void -~ - - - -
102 Flange 5 6/60 6 36
103 H - Comb 1 6/60 4 24
104 Skin 2 1 8 8
105 Close Out Flange 6 6/60 8 48
106 Flange '8 6/60 8 48
107 Skin - A 0 1 8 8
108 Containment Felt 1 1 8
109 H - Comb 3 6/60 4 24
481K 3,618 lirs.
110 Ass'y Tool 59K 1,382
Total 550K 5,000 Hrs.
3,000 Lbs, Mat'l @ $30/Lb. 90K
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In other cases some items are combined in the summary that
are shown separately in the primary cost breakdown. An
example of this is the acoustical treatment on the outer by-
pass duct which is shown as part of the duct assembly but was
added to the nacelle for the final summary. In other cases,
where portions of a composite structure were the same for
different engine configurations and time periods, there is
only one cost breakdown shown although it will appear in
whole or in part in different summaries. Cost breakdowns are
shown only for major items. Minor items, such as booster
blades, appear only in the summary tables.

Cost breakdowns for the following components are presented
for the 1979 engines in Tables XV through XXIV. The numbers

for Materials and Labor are running totals, tooling is not included.
The blade costs shown do not include the disc although this

was added for the DOC and ROI studies.

Nacelle

Fwd Outer Duct Acoustic

Spinner

Aft Outer Duct and Inner Duct

Structural Stator Case, Booster & Splitter plus
Splitter only

Structural Stator Case and Outer By-Pass
Fan Frame Replacement

Fan Frame Composite Design

Fan Blades

Typical breakdowns of the various types of production costs
as compared, on a percentage basis, to the metal baseline
costs are shown in Table XXV for the fan frame and Table
XXVI for the fan blades. Summary comparison for all com-
ponents are shown in Section 3.5.5.

Those items which were different in the 1985 composite
engine configuration were the following:
Nacelle -~ Fixed or No Splitter
Fwd Outer Duct Acoustic
Inlet Splitter
Aft Duct and Splitter
Vane Frame
Fan Blades
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Cost and labor breakdowns for these components are
shown in Tables XXVII through XXXII., Again, component
summaries are shown in Section 3.5.8

3.5.3 Development Costs

The major differences in the development cost for a
composite component over a metal component lie in the amount
of material and process development effort involved due to
the use of a new material system that is radically different,
from a materials and process standpoint, from the types of
materials currently used in today's jet engines. The costs
shown in this section deal mainly with this extra development
cost although normal design development costs are shown which
are used to obtain a development complexity factor.

In arriving at the costs for Development (materials
research and process development) a detailed list of work was
considered and a value placed upon each segment of the effort.
The detail of this effort is identified below.

Materials Research & Process Development

° Material selection

- Literature search

-~ Industry survey

- Analysis of literature search & industry survey
Identification of material supplier

Rough draft Specification

Approve Specification final draft

Certify material supplier to Specifications

Obtain material selected

Plan testing program to confirm mechanical and
physical properties

Fabricate test panels and specimens from several
lots of material

Conduct test program on specimens
Analyze test data
Establish standard deviation limits

Document data for design handbook
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Materials & Process Refinement

Define plan for subscale configuration process studies
Design & obtain subscale tooling for process studies

Obtain materials for fabrication of subscale shapes
and establish process limits

Write plan to fabricate subscale components to
refine process

Fabricate subscale components to demonstrate
refined process

Evaluate subscale component on basis of processing

Document process parameters

Design & Manufacturing Considerations

Define design limitations for the material & process
established

Provide design guidance to design engineering for
structural, environmental and economic considerations

Coordinate design changes with design engineering
during subscale fabrication and demonstration

Establish cost & weight limits
Subscale component NDE & DE

Design & Procure Development Tooling

Establish tooling concept

Coordinate tool concepts with Production Engineering
Design tools

Review tool designs & approve

Write request to purchase tools

Approve tooling source

Fund tooling

Liaison tooling

Approve completion of tooling

Receive tool & tool proof for dimensional checks
Accept tool

Process Development & Refinement

Define plan to refine process on full-scale component
Run heat-up rates on tooling




Manufacture full-scale hardware

Cut up components to confirm process material
properties

Document process and transition to production
Confirm that process will be successful in pro-
duction environment

Perform Nondestructive Evaluation (NDE) & Destructive
Evaluation (DE) Analysis

) Select NDE method suitable to the configuration
and construction

° Obtain instruments or modify existing equipment to
conduct the selected NDE method

° Conduct trial NDE first on subscale component

Confirm NDE method by cutting up (DE) subscale
component

Document NDE indications and limits
Conduct NDE on full-scale component

Conduct NDE indications by DE (1) full-scale
component

Document NDE technique and transition to production
) Confirm use of the NDE method in production
environment

Transmit Development to Production

° Write & issue the recommended process procedures
to be used in converting materials to hardware

) Write & issue document to tranéition NDE and DE
methods to be used in production

® Demonstrate feasibility of process, NDE & DE at
the production facility

The total number of hours and direct cost as shown in
Tables XXXIII through XLII for each component development
is based upon January, 1974, parameters. Sensitivity factors
for such unknowns as the effects of labor demands, energy
crisis as it relates to transportation, material shortages,
lead time effect on materials, tooling and supporting metal
hardware, strategic material priorities, and others have not
been factored in the cost estimates. Labor rates used for
development are typically laboratory scale and are higher
than labor rates used for production.
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Table XLVIII is a summary of the development costs, except
for turbine blades, grouped in the final comparison categories as
discussed in Section 3.3.8 and shown in Table XII. Also in Table
XLVIII are shown the standard engineering development costs such
as design and test cost which were assumed to be similar to costs
for a metal structure. The total of these costs and the material
and process costs produce the total development cost for each com-
posite part. The development complexity factor is obtained by
dividing this total cost by the standard development costs.

Table XLIX presents the estimated material development costs
and blade pilot production costs for the turbine blades. The
pilot production includes all blades needed for engine testing
up to production release.

3.5.4 Maintenance

The life cycle costs that were considered in arriving at some
realistic value for introducing advanced composites in jet engine
hardware investigated what specific areas of work contributed to
the total cost. The areas of work studied included the following:

1) Materials

2) Materials and process development
3) Prototype tooling

4) First article manufacture

5) Production tooling (rate)

6) Production fabrication

7) Repair and maintainability

Items 1 through 6 have been discussed in the previous sections.
This information was readily available from records maintained in
development and production facilities. However, the complete
record of repair and maintainability includes records maintained
in-house plus records maintained at the various overhaul centers
established by the airlines. It was decided that a realistic
accounting of the level of repair and maintenance could be obtained
from the two largest overhaul centers; therefore, these locations
were visited. They included the American Airlines Maintenance and
Engineering Center at Tulsa, Oklahoma, and the United Airlines
Maintenance and Engineering Center at San Francisco, California.
Each maintenance and engineering center visited and those contacted
by telephone said that no record of repair and maintenance is kept
on secondary structures. All fiber reinforced composites

currently used on commercial airframe and engines are considered
secondary structures. When composite primary structures are
introduced, a record of repair and maintenance will be kept.

In general, the composites now used on airframe and engines

have not needed repair beyond the 3,000-hour service life
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warranty except in those cases where damage occurred as the
result of foreign object ingestion,

The information compiled in-house and in the field indicates
that life expectancy of fiber reinforced polymeric composites is
equal to metal for secondary structures. It also shows that the
level of repair and maintenance is lower in most cases and equal
to in all other cases where damage has been experienced by the
product during use. Therefore, for the purpose of this study, it
has been assumed that there will be no overall cost difference in
the maintenance of composite structure versus metal structure.

3.5.5 Cost Comparison Summary

Using the component breakdown defined in Table XII of
Section 3.3.8, the development and production costs for the
various configurations of both the 1979 and the 1985 engines are
summarized in Table L. The development costs are given in dollars
and the production costs, for 600 units,are given as a percentage
of the appropriate baseline costs.
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3.6 BENEFIT ANALYSIS

Once the cost of each detail component was determined, its
effect on the engine selling price was ascertained. This was
done through a standard type business plan engine pricing
analysis. The input to this analysis consisted of the data dis-
cussed in the preceeding sections which consist basically of
development costs, tooling costs, and engine shop costs. The
business plan pricing analysis then converted these data into a
selling price, using data based on past commercial engine programs,
taking into account potential sales quantity, amortization of
development and tooling, and other costs such as IR&D, G&A,
warranty and retrofit, project expense, product support, royalty,
rent, reserves and insurance, and profit. The engine selling price
was then used as input to the benefit analysis in which the effect
each component has on the Direction Operation Cost (DOC) and the
Return On Investment (ROI) was evaluated.

3.6.1 Method

The economic benefits of engine or nacelle composite or
eutectic turbine alloy substitutions was calculated by converting
the resulting weight, cost, and performance engine changes into
changes in the base aircraft characteristics.

A baseline aircraft design was defined as summarized in
Table LI. This was a GE design based on advanced engine and air-
craft technology derived from various ATT contract studies. The
design lies within the range of advanced aircraft studied by the
aircraft companies but is meant to provide a reasonable basis for
trade factors rather than to represent an assessment of aircraft
capability. Trade factors for specific changes in engine
parameters (Table LII) were then calculated holding payload and
range constant and allowing the gross weight to vary as required.
Economic ground rules used are consistent with those used in
Ref. 3, with the approach being to illustrate the effect of changes
in engine parameters associated with each advanced design feature
on the change in aircraft economics.

Composite material substitutions were made with no effect on
engine SFC (cost and weight changes only). Eutectic turbine alloy
substitutions, however, result in cooling flow reductions which
result in SFC and engine core size changes for constant thrust.
Engine influence coefficients relating turbine cooling flow
changes to SFC and engine component sizes are given in Table LLTII.
Core, booster, and LP turbine weight and cost scaling relationships
employed to convert size to weight and cost changes are summarized
in Table LIV. The baseline engines at 1979 and 1985 technology
levels were sized to the same takeoff thrust, as shown on Table LV.
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Table LI. Mission and Aircraft Definition Used in Trade Studies.

Design Range, km (n, mi.)

Number of Passengers

Cruise Mach Number

A/C and Engine Technology Level

TOGW, kgs/1lbs

Number of Engines

Rated Thrust per Engine

Fuel Cost

Other Costs

5556 (3000) n. mi.

195

Advanced

121,109 (267,000) 1lbs

26,800 1bs

25¢/gal,

1973 $
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Table LIV. Engine Scaling.

® Design and cost estimates made in convenient size for each component

™ Scaled to common size 120,102 N (27,000 1bs. thrust)

using following exponents on thrust (or airflow) scale factor.

- sfc Const.,
- Basic engine rotor weight 1.4
- Basic engine static structure at 1.3
- Installation weight 1.0
- Basic engine cost 0.6
- Installation cost 0.8
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3.6.2 Preparation of Engine Cost Data

Once the cost of each detail component was determined in
the 119,212 N (26,800 1lb) Fn size, its effect on the total
engine cost to the aircraft manufacturer was ascertained, This
was done through a standard type business plan engine pricing
analysis, The input to this analysis consisted of shop costs,
development costs and tooling costs,

The economic factors considered in the pricing analysis are
summarzied in Table LVI, Production, development, and tooling
costs as well as normal overhead and pricing practices are in-
cluded in the engine selling price, Engine selling price is
subsequently referred to as engine cost in all subsequent tables,
viewed as cost to the airframe manufacturer as an input cost to
airline investment or operating cost economics,

Other economic factors such as maintenance and parts
replacement are included in the DOC by a GE modification of the
ATA method,

Depreciation is taken over a 15 year period rather than 12
and 20% engine spares are assumed rather than 40% in the 1967
ATA formula, Also, engine maintenance and materials costs were
taken at rates obtained from GE experience which differs from
the ATA formula,

3.6.3 Discussion of Results

Results for ADOC, AROI, AA/C selling price, and A% fuel
saved are given for each element evaluated.

To aid in the appreciation of the magnitudes implied by
a 1% DOC saving or a 1% fuel saving, the aggregate saving for
a fleet of 100 A/C and 1000 A/C are provided below,

Fleet Size
Number of aircraft 100 100 (70)

1% Fuel Saving

Equals cubic meter/year 23000 (7) 230000 (70)
(millions gals/year)

1% DOC Saving

Equals millions $/year 4 40

1% ROI Increase

Equals an equivalent increase in 60 600
total discounted cash flow

(millions of $) over 14 years life

of A/C,
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3.6.4 Economic Benefits - Composite Materials

All design substitutions are made in a size appropriate to
either the 1979 or 1985 technology level. The base engine for
1979 technology differs from the 1985 technology engine as
indicated in Table LV. A summary of weight and cost changes
due to the nacelle and each of the five engine parts considered
on a replacement or redesign basis is reproduced in Table LVII.

The economic benefits calculated for the best estimate
costs of Table LVII are given in Tables LVIII through Table LXIII
for each of the substitutions. The summary of ADOC improvements
in Table LXIV shows that composites in the nacelle has the
largest payoff with the fan rotor in second place. Total potential
gains vary from 2.8% to 4.6% for the various cases studied.

3.6,5 Economic Benefits - Eutectic and Tungsten Wire Superalloy
Turbine AIloys

The economic benefits of substituting advanced NiTac or tungsten
wire-superalloy for R120 in the single stage high pressure turbine
are summarized in Tables LXV and LXVI. The benefits are calculated
for two levels of design bulk temperature increase, +839C (+1500F)
and +1679C (+3009F) and with no blade cost differences assumed.
The magnitude of the bulk temperature which can be achieved con-
sidering all limiting factors is uncertain and results are there-~
fore presented to cover the range of possibilities for the two
advanced materials. Several levels of turbine blade cooling tech-
nology were also assumed for the comparison. There will be a
problem in putting holes in either of the advanced materials and
more important in coating the inside of the holes. Therefore,
results are provided with and without restrictions on the use of
cooling holes,

The results of substituting advanced turbine materials in the
low pressure turbine are given in Table LXVII, also for no blade
cost difference and for convection and impingement cooling.

3.6.6 Sensitivity Study - Composite Materials

Since there is some uncertainty, due to the developmental stage
of the state-of-the-art, as to the level of cost achievable with
composite materials and construction, a sensitivity study was
performed to evaluate various cost ranges.

In the area of material costs, the prices for the prepreg
materials selected for consideration in this study were based
on a substantial reduction in fiber and prepreg process costs
during the 1974 to 1985 time period. These prices are possible
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Table LXVI. Benefits of Tungsten Wire Composite Material in High Pressure
Turbine Blade (Concluded).

(Not Including Blade Cost Differences)

Cooling Tech. Level Adv. Film ‘ —3
Blade Material R120 Tungsten Wire Superalloy
A T Capability, °C (°F) Base 731350) ﬁggm
No. Engines 2000 >
T4, °C (°F) 1538 (2800) -

A DOC, % Base -.34 -.63

A ROI, Points +.16 +.29

A A/C Sell. Price, % -.36 | -. 67

A Fuel Used,' % v -.39 -.74
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if basic material and process trends continue as they have been
over the past few years. However, the effect of inflation and
energy crisis factors on these trends are difficult to measure
accurately. A judgement was made on the likely variation in these
costs based on the best information on future costs for prepreg
that is available at this time. This information is presented

in Figures 43 and 44 for the 1979 and 1985 time periods
respectively.

In the area of manufacturing costs, data from materials
and process development programs and from composites production
at General Electric in Cincinnati, Ohio and Albuquerque, New Mexico,
have been used in making a judgement on cost estimates described
herein for composites in the 1979 and 1985 time period. By this
time, additional knowledge on materials and processes will have
been gained, and more sophisticated tooling and equipment will
undoubtedly have been introduced and be in operation. These
assumptions have not been considered in making the cost estimates.
However, the following factors have influenced the judgements
made in establishing the confidence level of the cost values that
have been projected for the 1979 and 1985 composite designs.
These factors are:

. Firmness of design

Accuracy of material cost projections
Accuracy of learning curve

. Process refinement

INRR

The above factors are not well defined at this 1974 period.
Because of this, a confidence level of 80% has been placed on the
cost estimates made for the composites planned for 1979, and a
confidence level of 60% has been established for the cost estimates
made on the composites described for 1985. The level of confidence
projected for both time periods is shown in the curves on Figures
45 and 46.

Other sensitivity factors not counsidered in the confidence
levels shown for the composites include:

1. Effect of labor demands

2. Availability of skilled manpower
3. Energy crisis
4. Others

These factors could significantly alter the cost of manufactur-
ing the many composites considered in the cost and benefits study.
However, the ratio of cost to percent confidence would still be
the same relative value.
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Figure 43. 1979 - Cost of Prepreg.
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Figure 44. 1985 - Cost of Prepreg.
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Based on the above information, the effects of a range of
cost estimates are given in Figures 47 through 50. If the highest
cost estimate is assumed for the fan frame, in 1979 technology,
for example, then no economic benefit results. The two parts
having the largest potential gain, the nacelle and fan rotor, show
a net gain even for the highest cost estimate.

The effect of the engine production volume was also investi-
gated as shown in Figure 51. All data in the basic economic
benefit analysis was computed on the basis of a 2000 engine
production. If the number of engines produced is reduced to
1000, the economic benefit increases because the engine costs are

higher and as a result savings for composite substitutions are
greater when expressed in a percentage.

3.6.7 Sensitivity Study - Eutectic and Tungsten Wire/Superalloy
Turbine AILOyS

The advanced blade materials will cost more than current
materials but, at this stage of development, it is not possible to
estimate the magnitude of the increase. The effect of relative
cost of the advanced NiTaC and tungsten wire-superalloy for the economic
benefits of their employment in the high pressure turbine are
shown in Figures 52 through 57. A range of cost estimates based on
changing the materials plus casting (or layup) costs by a factor of
two to ten is illustrated. The remainder of the blade cost
(machining, drilling and inserts) is assumed to be a function of
cooling technology and not the material.

Similar results are shown in Figures 58 and 59 for the low
pressure turbine.

The effect of engine production volume is shown in
Figure 60. The increased DOC payoff shown for 1000 engines vs.
2000 engines at a blade cost ratio of 2 is due, as in the case of
the composites, to the higher unit engine cost. At a blade cost
ratio of two the economic benefit in a 2000 engine production run
is greater than in a 1000 engine run because the engine cost
increase due to eutectic alloys is reduced as engine costs decrease
with production volume.

The results of this study clearly show that the cost of the
advanced material must be kept within reason if an
improvement in DOC or ROI is to be obtained. For example, if the
"casting" cost is 2 or 4 times that of the base material and
the HPT blade design is current film cooling (all cases), the
following improvements in DOC are obtained vs. the current DOC
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4 x Casting Cost 2 x Casting Cost
830C 1670C 830C 1670C

Material AT (#150°F)  (+300°F) (+150°F) (+300°F)
ADOC due to HP (current film -.5% -.95% -.75% -1.2%
cooling)
ADOC due to LPT (convection plus -.1% -.55% -.5% -.9%
impingement)
Total ADOC -.6% - =1.50% -1.25% -2.1%

The above suggests that a 4:1 casting cost should be the
minimum objective depending upon how much AT capability is achieved.
If more elaborate cooling is employed on the HPT;the cost objective
should be lower although the advanced cooling will be a cost factor
itself.

The above results apply to an advanced engine in a new aircraft
designed for a 5556 km (3000 n. mi.) range. It should be noted that for
a longer range aircraft 10,186 km (5500 n.mi.) being the usual
requirement for intercontinental A/C), the advantages of reduced
cooling air and its effect on engine performance will be greater.

In the case of growth of an existing engine, the situation is much
different. Here the incentive is normally to achieve an increase
in thrust for a given set of hardware. The advanced turbine
material will allow a reduction in cooling air which means that a
given increase in thrust can be achieved with a lower turbine temp-
erature or a higher thrust achieved (with appropriate attention to
other limiting parts) for a given turbine temperature. bPepending
upon the limitations of other engine parts, it may prove economical
to go to the advanced turbine material in spite of its higher cost
to achieve the required thrust.
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4.0 CONCLUSIONS

The conclusions reached during this program are summarized
below and are based on the information shown and discussed in
Section 3. The expected overall conclusion, that the use of
polymeric composites in appropriate areas of advanced high by-
pass turbofan engines will result in both a weight and cost
savings, was verified. 1In the turbine area the potential per-
formance benefits available through the use of advanced eutec-
tics and tungsten wire superalloy composites were demonstrated.
The major value of the program was in identifying these com-
ponents which showed the greatest benefit through the use of
these materials and of quantifying these benefits. The more
specific conclusions that can be drawn from this program are:

1.

178

The two major engine components which showed
potential for the most dramatic relative improve-
ment in both weight and cost were the fan frame
and the fan rotor assembly.

A composite fan frame would provide a weight
savings ranging from 24 percent to an impressive
46 percent and a cost savings ranging from 14
percent to 54 percent, depending on the engine
studied. Scaled to a common engine size, this
represents weight savings ranging from 58 Kg

(124 pounds) for the 1985 replacement version

to 99 Kg (217 pounds) for the 1979 redesigned
frame. The lesser total weight savings for the
1985 engines are due to the lighter metal base-
line design assumed for that time period. These
improvements result in a decrease in DOC ranging
from 0.25 percent to 0.63 percent and a fuel
savings ranging from 0.39 percent to 0.65 percent.
As could be expected, the most benefits are found
in the 1985 redesigned engine. However, even the
1979 replacement version showed significant im-
provement in that a production version would cost
only 86 percent of the metal baseline and would
weigh 86 Kg (190 pounds) less, in the engine size
studied, which would provide a decrease of 0.25
percent in the DOC and a fuel savings of 0.56
percent.

In considering the fan rotor assembly, composite

fan blades were considered practical only for the
redesign configurations. 1In these applications
only the blades were composite with the metal disk
weight being adjusted to match the lighter blade
weight. This resulted in a fan rotor overall weight
reduction of between 24 percent and 30 percent

(39 percent on the blades themselves without
including the metal disk) and a cost savings of




(continued)

from 58 percent to 72 percent of the metal
baselines. Again, scaled to a common engine
size, this represents a weight savings of

from 44 Kg (97 pounds) for the 1979 redesigned
fan to 54 Kg (120 pounds) for the 1985 fan
rotor assembly. This produced a reduction in
DOC of from 0.70 percent to 0.98 percent and a
fuel savings of from 0.29 percent to 0.36
percent.

Another component that showed significant po-
tential benefit, especially in the area of
fabrication cost, was the nacelle. The unitized
methods of construction, commonly used for large
composite parts, lend themselves especially well
to this component and offer very worthwhile im-
provements in the cost of acoustically treated
nacelles. The production cost of a nacelle for
the 1985 composite engine is estimated to be only
48 percent of the cost of an equivalent metal
structure. The composite redesign version of this
nacelle showed a reduction in DOC of 2.23 percent,
an increase in ROI of 1.53 percent, and a reduc-
tion in fuel used of 1.61 percent. If the com-
posite containment of composite blades is not in-
cluded as part of the benefit of this nacelle,
the reduction in DOC due to the composite nacelle
is 1.94 percent, the increase in ROI is 1.39
percent and the fuel saved is 1.15 percent. From
this, it is apparent that the use of composite
containment for composite blades is in itself a
significant item and would become even more so in
larger thrust class engines. It should also be

pointed out that the required composite containment

weight used in this program was probably very
conservative (possibly by as much as a factor of 3)
due to a lack of actual test data.

The weight savings ranged from 19 percent to

25 percent depending on the concept. Scaled to a
common engine size, this represents a savings of
from 191 Kg (421 pounds) for the 1985 replacement
nacelle to 275 Kg (605 pounds) for the 1979 rede-
signed nacelle. These numbers include the appro-
priate containment weights. Again, as in the fan
frame, the lesser weight savings for the 1985
engine is a reflection of the estimation of the
advanced metal designs assumed to be available
for that time period.
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Other components investigated in the cool part

of the engine, although showing some savings in
weight and cost did not show sufficient payoff in
DOC, ROI, or fuel saved to be included in
individual development programs. These items
were the stator case assembly, spinner, and
booster blades and could later be incorporated
using technology obtained from the development

of the more significant components.

Metallic composites showed very little payoff in
the compressor and fan components. The primary
reason is that for subsonic high bypass turbofans
the application is limited because the front end
is relatively cool and polymeric composites can
be used at a lower cost and weight.

The concept of replacing an existing metal com-
ponent with a composite component which must mate
with an existing structure, while still showing a
definite improvement, is not nearly as efficient
as employing composites in the original engine/
nacelle design.

Although much concern has been expressed about
the maintenance aspects of composite structures,
no significant problems exist with the majority
of the composite components currently in use that
could not be alleviated with proper attention to
detail during the design phases.

The results of the study showed that the most
significant effect of the use of advanced turbine
blade materials is in the reduction in required
cooling air and the resultant increase in engine
efficiency and consequent reduction in fuel consump-
tion. The cost of the advanced turbine blade
material must be kept within reason in order to
obtain a net improvement in DOC or ROI. Limiting
the cost of casing or lay-up of the blade to four
times the casting cost of current blade plus
material should be a minimum objective. Depending
upon the limitations of other engine parts, however,
it may prove economical to go to the advanced
turbine material in spite of its higher cost to
achieve the required thrust.




5.0 RECOMMENDATIONS

Based on the information developed by this study, the follow-
ing recommendations are made:

1.

Even though there is more payoff in a redesigned type of
composite application than in a replacement concept,
there is still significant advantages to be obtained by
the latter approach. In addition to demonstrating the
predicted cost and weight payoffs, a replacement design
would develop much of the technology required for future
new designs and the component could be flight and service
tested at a much earlier date than would be the case if

a major engine design or redesign were involved.

A program should be established which will lead to major
metal components of an existing turbofan engine being
replaced by composite components. This program should in-
clude all the required development effort and should lead
to a flight evaluation. The most logical of the high pay-
off components to use for this type of program would be
the fan frame and the fan blades,

Development of eutectics and tungsten wire superalloys for '
turbine blade applications should be continued to better define

their potential capabilities and future production costs.

An extensive study should be made of the maintenance
aspects of major composite structures, This should include
an evaluation of the existing repair facilities and of

any additions which may be required to handle a large
volume of composite structures. This study should also in-
clude an evaluation of possible field inspection techniques
and of acceptable repair procedures. The types of damage
most likely to occur for various engine locations should

be identified.
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